| For All Solvers
OMC221

OMC221(F) - 別解

ユーザー解説 by MARTH

 k=0,1,,100k=0,1,\dots,100 について 平面 z=kz=k 内で, x,yx,y 方向に 11 進む回数をそれぞれ xk,ykx_k,y_k とおくと, スコアは k=0100xkyk\prod_{k=0}^{100}x_ky_k となり, そのような操作方法は k=0100(xk+ykxk)\prod_{k=0}^{100}\binom{x_k+y_k}{x_k} 通りとなる. したがって, x0+x1++x100=400,y0+y1++y100=400 \begin{aligned} x_0+x_1+\dots+x_{100}=400,\\ y_0+y_1+\dots+y_{100}=400 \end{aligned} を満たす非負整数の組 (x0,x1,,x100,y0,y1,,y100)(x_0,x_1,\dots,x_{100},y_0,y_1,\dots,y_{100}) すべてについて, (k=0100xkyk)(k=0100(xk+ykxk))=(k=0100xkyk(xk+ykxk))\Bigg(\prod_{k=0}^{100}x_ky_k\Bigg)\Bigg(\prod_{k=0}^{100}\binom{x_k+y_k}{x_k}\Bigg)=\Bigg(\prod_{k=0}^{100}x_ky_k\binom{x_k+y_k}{x_k}\Bigg) の総和を求めれば良い.
 x,yx,y22 変数冪級数について以下が成立する. f(x,y)=11(x+y)=k=0(x+y)k=i=0j=0(i+ji)xiyjf(x,y)=\dfrac{1}{1-(x+y)}=\sum_{k=0}^{\infty}(x+y)^k=\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}\binom{i+j}{i}x^iy^j これを用いて, g(x,y)=i=0j=0ij(i+ji)xiyjg(x,y)=\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}ij\binom{i+j}{i}x^iy^j は以下のように表示できる. g(x,y)=i=0j=0ij(i+ji)xiyj=i=0j=0xyyx((i+ji)xiyj)=xyyx(i=0j=0((i+ji)xiyj))=xyyx(11xy)=2xy(1xy)3 \begin{aligned}g(x,y)&=\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}ij\binom{i+j}{i}x^iy^j\\ &=\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}xy\frac{\partial}{\partial y}\frac{\partial}{\partial x}\Bigg(\binom{i+j}{i}x^iy^j\Bigg)\\ &=xy\frac{\partial}{\partial y}\frac{\partial}{\partial x}\Bigg(\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}\Bigg(\binom{i+j}{i}x^iy^j\Bigg)\Bigg)\\ &=xy\frac{\partial}{\partial y}\frac{\partial}{\partial x}\Bigg(\frac{1}{1-x-y}\Bigg)\\ &=\frac{2xy}{(1-x-y)^3} \end{aligned}  MM(g(x,y))101(g(x,y))^{101}x400y400x^{400}y^{400} の係数であり, 以下のように計算できる. [x400y400](g(x,y))101=[x400y400](2xy)101(1xy)303=2101[x400101y400101]1(1(x+y))303=2101[x299y299](k=0(k+302302)(x+y)k)=2101[x299y299](((299+299)+302302)(x+y)299+299)=2101×(900302)(598299)=2101×900!302!299!299! \begin{aligned} [x^{400}y^{400}](g(x,y))^{101}&=[x^{400}y^{400}]\frac{(2xy)^{101}}{(1-x-y)^{303}}\\ &=2^{101}[x^{400-101}y^{400-101}]\frac{1}{(1-(x+y))^{303}}\\ &=2^{101}[x^{299}y^{299}]\Bigg(\sum_{k=0}^{\infty}\binom{k+302}{302}(x+y)^k\Bigg)\\ &=2^{101}[x^{299}y^{299}]\Bigg(\binom{(299+299)+302}{302}(x+y)^{299+299}\Bigg)\\ &=2^{101}\times\binom{900}{302}\binom{598}{299}\\ &=2^{101}\times\frac{900!}{302!299!299!}\\ \end{aligned} となる.