| For All Solvers
OMC068 (for beginners)

OMC068(F)

ユーザー解説 by tria

 図形の問題は苦手なので計算で解きます><

 θ=141.4\theta=141.4^\circとおきます.BAP=3002θ,PCB=150θ\angle BAP=300^\circ-2\theta,\angle PCB=150^\circ-\theta であるので,正弦定理より,
APPB=sin(θ120)sin(3002θ),CPPB=sin30sin(150θ)\dfrac{AP}{PB}=\dfrac{\sin(\theta-120^\circ)}{\sin(300^\circ-2\theta)},\quad \dfrac{CP}{PB}=\dfrac{\sin30^\circ}{\sin(150^\circ-\theta)} ここで PAC=x\angle PAC=x とおくと APCP=sin(2θ180x)sinx\dfrac{AP}{CP}=\dfrac{\sin(2\theta-180^\circ-x)}{\sin x} 一方,
APCP=sin(θ120)sin(150θ)sin(3002θ)sin30=sin(θ120)cos(150θ)=sin(θ120)sin(240θ)=sin(θ120)sin(θ60)\dfrac{AP}{CP}=\dfrac{\sin(\theta-120^\circ)\sin(150^\circ-\theta)}{\sin(300^\circ-2\theta)\sin30^\circ}=\dfrac{\sin(\theta-120^\circ)}{\cos(150^\circ-\theta)}=\dfrac{\sin(\theta-120^\circ)}{\sin(240^\circ-\theta)}=\dfrac{\sin(\theta-120^\circ)}{\sin(\theta-60^\circ)} であり,これは x=θ60x=\theta-60^\circ のとき成り立ちます.
 図から xx は一意に定まるので x=θ60=81.4x=\theta-60^\circ=81.4^\circ とわかり,答えは 412\textbf{412} です.