| For All Solvers
OMC100 (for experts)

OMC100(C)

ユーザー解説 by dama_math

 つねに i+1jij=1\left\lceil \frac{i+1}{j} \right\rceil-\left\lfloor \frac{i}{j} \right\rfloor=1 が成り立つから, (i=1106+1j=1106+1ij)(i=1106j=1106ij)=i=1106j=1106(i+1jij)+j=1106+11j+i=1106i+1106+1=(106)2+(106+1)+106=1000002000001.\begin{aligned} \Biggl(\sum_{i=1}^{10^6+1}\sum_{j=1}^{10^6+1}{\left\lceil \frac{i}{j} \right\rceil}\Biggr)-\Biggl(\sum_{i=1}^{10^6}\sum_{j=1}^{10^6}{\left\lfloor \frac{i}{j} \right\rfloor}\Biggr) &=\sum_{i=1}^{10^6}\sum_{j=1}^{10^6}\Biggl(\left\lceil\frac{i+1}{j} \right\rceil-\left\lfloor \frac{i}{j}\right\rfloor\Biggr)+\sum_{j=1}^{10^6+1}{\left\lceil \frac{1}{j} \right\rceil}+\sum_{i=1}^{10^6}\left\lceil \frac{i+1}{10^6+1} \right\rceil\\ &=(10^6)^2+(10^6+1)+10^6\\ &=\textbf{1000002000001}. \end{aligned}