| For All Solvers
OMC090 (for beginners)

OMC090(D)

ユーザー解説 by masa_kasa

 一般に 32263226 を偶数 nn とおき, 問題の方程式の左辺を P(x)P(x) とする.
xnP(1x)=xn(1xx1)(1xx2)(1xxn)=(x1x1)(x2x1)(xnx1)=x1x2xn(x1x1)(x1x2)(x1xn)=(n+1)(x1x1)(x1x2)(x1xn) \begin{aligned} x^{n}P\left(\frac{1}{x}\right) & =x^{n}\left(\frac{1}{x}-x_{1}\right)\left(\frac{1}{x}-x_{2}\right)\cdots\left(\frac{1}{x}-x_{n}\right)\\ & =\left(x_{1}x-1\right)\left(x_{2}x-1\right)\cdots\left(x_{n}x-1\right)\\ & =x_{1}x_{2}\dots x_{n}\left( x-\frac{1}{x_{1}} \right)\left( x-\frac{1}{x_{2}} \right)\cdots\left( x-\frac{1}{x_{n}} \right)\\ & =(n+1)\left( x-\frac{1}{x_{1}} \right)\left( x-\frac{1}{x_{2}} \right)\cdots\left( x-\frac{1}{x_{n}} \right) \end{aligned}  が成り立つから, この式に x=1x=1 を代入すれば, P(1)=(n+1)(11x1)(11x2)(11xn)P(1)=(n+1)\left( 1-\frac{1}{x_{1}} \right)\left( 1-\frac{1}{x_{2}} \right)\cdots\left( 1-\frac{1}{x_{n}} \right)  したがって, 以下の計算により求める値は (11x1)(11x2)(11xn)=P(1)n+1=3227×322823227=1614.\left( 1-\frac{1}{x_{1}} \right)\left( 1-\frac{1}{x_{2}} \right)\cdots\left( 1-\frac{1}{x_{n}} \right)=\frac{P(1)}{n+1}=\frac{\frac{3227\times 3228}{2}}{3227}=\mathbf{1614}.