ユーザー解説 by shino_P
与えられた 222 式から,交点 (X,Y)(X,Y)(X,Y) は
Y=XY−1712X+722,XY=Y2−1712X2+722XY = XY - \dfrac{17}{12}X + \dfrac{7}{22},XY = Y^2 - \dfrac{17}{12}X^2 + \dfrac{7}{22}XY=XY−1217X+227,XY=Y2−1217X2+227X
すなわち
XY=Y+1712X−722=Y2−1712X2+722XXY = Y + \dfrac{17}{12}X - \dfrac{7}{22} = Y^2 - \dfrac{17}{12}X^2 + \dfrac{7}{22}XXY=Y+1217X−227=Y2−1217X2+227X
0=−1712X2+Y2+(722−1712)X−Y+722=X2+Y2−145132X−4112Y+722\begin{aligned} 0 &= -\dfrac{17}{12}X^2 + Y^2 + \left(\dfrac{7}{22} - \dfrac{17}{12}\right)X - Y + \dfrac{7}{22}\\ &= X^2 + Y^2 - \dfrac{145}{132}X - \dfrac{41}{12}Y + \dfrac{7}{22}\\ \end{aligned}0=−1217X2+Y2+(227−1217)X−Y+227=X2+Y2−132145X−1241Y+227
を満たすから,円の式は (x−145264)2+(y−4124)2=10112534848\left(x - \dfrac{145}{264}\right)^2 + \left(y - \dfrac{41}{24}\right)^2 =\dfrac{101125}{34848}(x−264145)2+(y−2441)2=34848101125