| For All Solvers
NF杯2024

NF杯2024(G) - 直接導出する方法

ユーザー解説 by shino_P

 与えられた 22 式から,交点 (X,Y)(X,Y)

Y=XY1712X+722XY=Y21712X2+722XY = XY - \dfrac{17}{12}X + \dfrac{7}{22},XY = Y^2 - \dfrac{17}{12}X^2 + \dfrac{7}{22}X

 すなわち

XY=Y+1712X722=Y21712X2+722XXY = Y + \dfrac{17}{12}X - \dfrac{7}{22} = Y^2 - \dfrac{17}{12}X^2 + \dfrac{7}{22}X

 すなわち

0=1712X2+Y2+(7221712)XY+722=X2+Y2145132X4112Y+722\begin{aligned} 0 &= -\dfrac{17}{12}X^2 + Y^2 + \left(\dfrac{7}{22} - \dfrac{17}{12}\right)X - Y + \dfrac{7}{22}\\ &= X^2 + Y^2 - \dfrac{145}{132}X - \dfrac{41}{12}Y + \dfrac{7}{22}\\ \end{aligned}

 を満たすから,円の式は (x145264)2+(y4124)2=10112534848\left(x - \dfrac{145}{264}\right)^2 + \left(y - \dfrac{41}{24}\right)^2 =\dfrac{101125}{34848}